

Innenzahnrad-Einheit

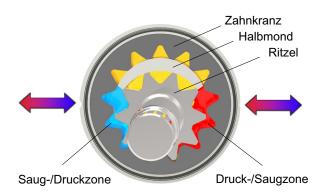
für Motor-/Pumpenbetrieb Baureihe QXEM für Anwendungen im 4-Quadranten-Betrieb

Referenz: 100-P-000225-DE-03

Stand: 12.2018 1/16

Inhaltsverzeichnis Seite 1.1 1.2 1.3 2.1 2.2 3.1 Schalldruckpegel 3.2 3.3 3.4 5.1 5.2 5.3 5.4 Hinweis

1 Allgemein


1.1 Produktbeschreibung

Für Anwendungen im drehzahlvariablen Mehrquadrantenbetrieb hat Bucher Hydraulics eine spezielle Ausführung entwickelt:

Die Innenzahnrad-Einheit QXEM.

Ein Hauptvorteil der QXEM ist der symmetrische Aufbau mit identisch ausgeführten Hoch- und Niederdruckzonen. Die Konstruktion ist anhand spezieller Steuernuten und Schmiersysteme sowie den zwei gleich großen, druckfesten Anschlüssen eigens für 2- und 4-Quadranten-Anwendungen optimiert. Somit ist die QXEM für beide Drehrichtungen bei Hoch- und Niederdruck bestens geeignet.

Durch den Einsatz von hochpräzisen Getriebeteilen mit Ritzelwelle werden geringste Pulsationswerte auch bei niedrigen Drehzahlen erreicht.

1.2 Vorteile

- kompakte, nicht-kompensierte Bauweise
- geringste Förderstrom- und Druckpulsationen durch Ritzelwellentechnologie
- höchste Zuverlässigkeit bei hohen und niedrigen Drehzahlen
- einsatzbewährt für drehzahlkonstante und -variable Antriebe
- lange Lebensdauer auch bei hochzyklischen Belastungen
- Drehrichtungswechsel im Millisekundenbereich (Ritzelwelle)
- für Sonderflüssigkeiten, z. B. HFB, HFC, HFD oder biologisch abbaubare Flüssigkeiten geeignet

1.3 Anwendungen

- · Spritzgußmaschinen
- Hydraulische Pressen
- Abfallpressen
- · Druckgussmaschinen

2 Technische Daten

2.1 Allgemein

Kenngrößen	Einheit	it Bezeichnung, Wert						
Einbaulage		beliebig						
Befestigungsart (Standard)		2-Loch-Flansch nach ISO 3019/1 (SAE): QXEM 3-6 2-Loch-Flansch nach ISO 3019/2 (metrisch): QXEM 2+8						
Drehrichtung		rechts und links						
Antriebsart		über elastische Kupplung						
Druckflüssigkeit		HLP-Mineralöl DIN 51524 Teil 2 HFB, HFD und HFC nach VDMA 24317 (andere auf Anfrage)						
Max. zulässiger Verschmutzungsgrad der Druckflüssigkeit		20/18/15 nach ISO 4406						
Betriebsviskosität Startviskosität	mm ² /s	10 100 10 300 (abweichende Werte auf Anfrage)						

Kenngrößen	Einheit	Bezeichnung, Wert						
Druckflüssigkeitstemperatur	°C	mindestens: -20°C max. +80°C (Viskositätsgrenze beachten) idealer Bereich: +30°C+60°C Option 09: -20°C+100°C						
max. Druck am Leckölanschluss	bar	1,5 absolut (andere auf Anfrage)						
Summendruck		Anschluß P ₁ + Anschluß P ₂ ≤ kontinuierlicher Betriebsdruck						
Dichtungswerkstoff		NBR = Standard FPM(Viton) = Option 09						

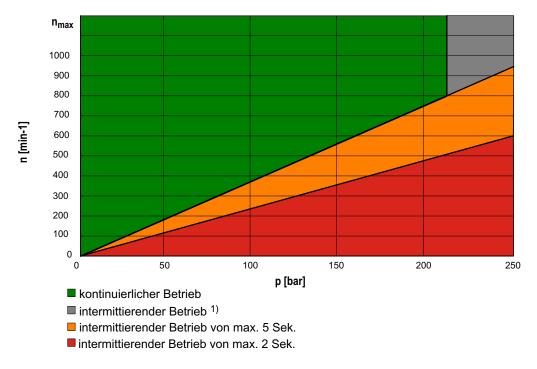
2.2 Kenngrößen

WICHTIG: Die nachstehend angegebenen Kenngrößen gelten für Mineralöle nach DIN 51524 bei 42 mm²/s.

Тур		gungs- / volumen	maximale [mi	Drehzahl n ⁻¹]	Betrieb [b	Drehmoment ³⁾	
	nominal [cm ³ /U]	effektiv ¹⁾ [cm ³ /U]	Pumpen- betrieb ⁴⁾	Motor- betrieb	konti- nuierlich	intermit- tierend ²⁾	
QXEM22-005 QXEM22-006 QXEM22-008	005 006 008	5,1 6,3 7,9	3250	6000	210	250	17 21 26,5
QXEM32-010 QXEM32-012 QXEM32-016	010 012 016	10,0 12,6 15,6	3050	5500	210	250	33,5 42 52
QXEM42-020 QXEM42-025 QXEM42-032	020 025 032	20,3 25,1 32,3	2900	5000	210	250	68 84 108
QXEM52-040 QXEM52-050 QXEM52-063	040 050 063	39,1 50,3 63,4	2500	4500	210	250	131 169 212
QXEM62-080 QXEM62-100 QXEM62-125	080 100 125	79,8 100,5 124,2	2250 2050 1800	4000	210	250	268 337 416
QXEM82-160 QXEM82-200 QXEM82-250	160 200 250	161,9 200,0 247,7	1600 1500 1350	3500	210	250	544 671 832

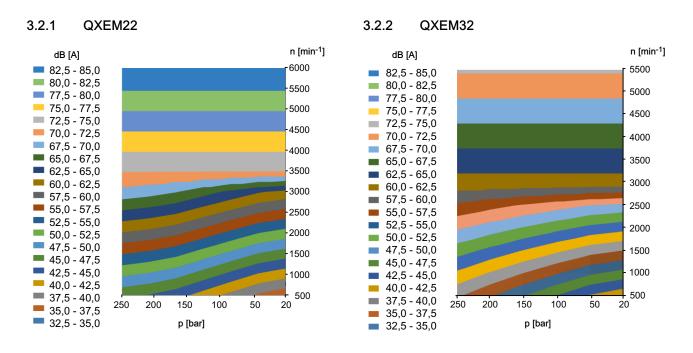
¹⁾ Aufgrund der Fertigungstoleranzen kann es beim Verdrängungsvolumen geringe Abweichungen geben.

²⁾ Maximal 20 Sekunden pro Minute, jedoch nicht mehr als 10% der Einschaltdauer.

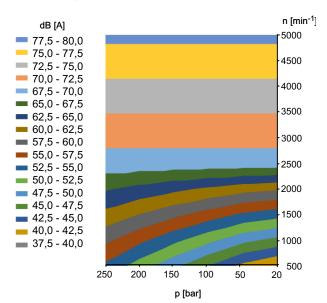

³⁾ Theoretischer Wert bei maximalen, kontinuierlichen Beriebsdrücken (Anlaufdrehmomente siehe Kennlinien Kapitel 3).

⁴⁾ Betriebsdruck am Eingang mindestens 0,98 bar absolut.

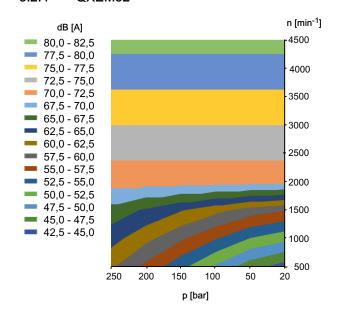
3 Kennlinien


3.1 Minimale Drehzahlgrenzen QXEM für Pumpen- und Motorbetrieb

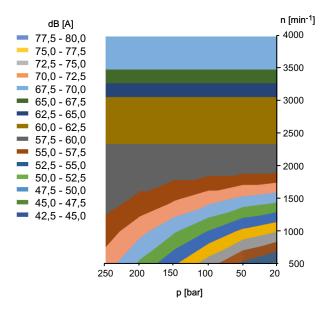
¹⁾ Maximal 20 Sekunden pro Minute, jedoch nicht mehr als 10% der Einschaltdauer.

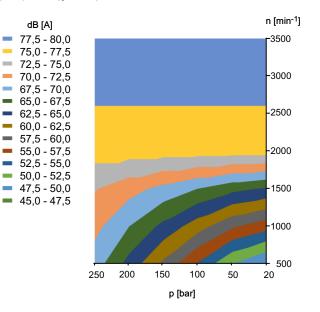

3.2 Schalldruckpegel

Gemessen nach DIN 45635 Teil 26 im reflexionsarmen Schallmessraum, gültig für Einzeleinheiten mit Abweichungen von ± 1,5 dB [A].



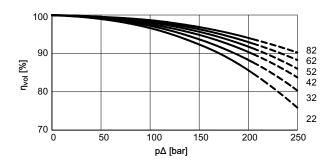
BUCHER hydraulics

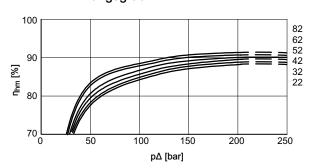



3.2.4 QXEM52

3.2.5 QXEM62

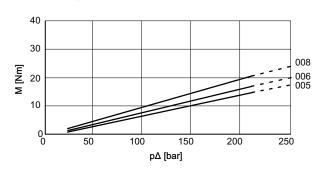
3.2.6 QXEM82



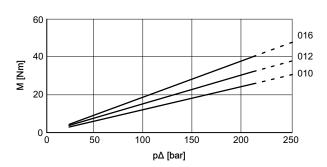

3.3 Wirkungsgrad (η)

Gemessen bei Viskosität 42 mm²/s, Drehzahl 1450 min⁻¹ Volllinie = Dauerdruck / Strichlinie = max. intermittierender Druck

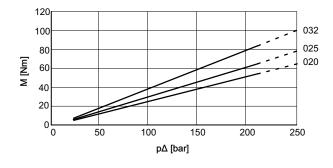
3.3.1 Volumetrischer Wirkungsgrad

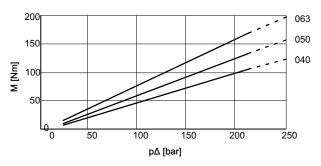


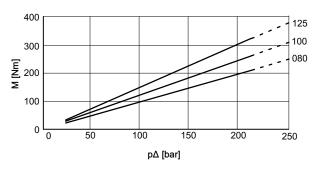
3.3.2 Hydraulisch - mechanischer Wirkungsgrad

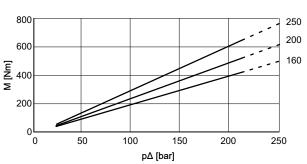


3.4 Anlaufdrehmoment


3.4.1 QXEM22

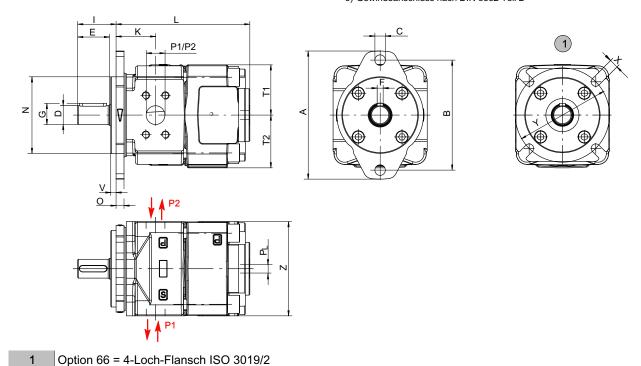

3.4.2 QXEM32


3.4.3 QXEM42


3.4.4 QXEM52

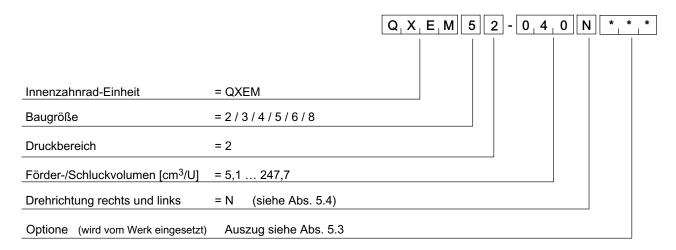
3.4.5 QXEM62

3.4.6 QXEM82



4 Abmessungen

Baugröße	2	3	4	5	6	8		
Druckbereich		2	2	2 2 2 2				
Anschlüsse SAE J518 ¹⁾	P ₁ , P ₂	G ½" ³⁾ Gewinde	G ¾" ³⁾ Gewinde	1"	11⁄4"	1½"	2"	
Leckölanschluss nach DIN 3852 Teil 2	PL	G ¼"	G 1⁄4"	G 1⁄4"	G ¼"	G ¾"	G ½"	
	Α	118	132	170	212	267	330	
Befestigungsart: ovaler 2-Loch Flansch	B(SAE)	ı	106	146	181	229	-	
ISO 3019/1 (SAE - Baugröße 3-6)	B(Metr.)	100	109	140	180	224	280	
ISO 3019/2	С	9	11	14	18	22	26	
(Metr Baugröße 2+8)	N(SAE)	-	82,55 -0,05	101,6 -0,05	127 -0,05	152,4 -0,05	-	
	N(Metr.)	63 h8	80 h8	100 h8	125 h8	160 h8	200 h8	
	0	8,5	8,5	10,5	12,5	16,5	20	
	V	6	6	7	7	7	9	
Befestigungsart:	X(Metr.)	9	9	12 14		18	22	
4-Loch Flansch ISO 3019/2	Y(Metr.)	85	103	125	160	200	250	
	D	16 j6	20 j6	25 j6	32 j6	40 j6	50 j6	
	E	28	36	42	58	82	110	
Wellenende zylindrisch ISO/R775 ²⁾	F	5	6	8	10	12	14	
	G	18	22,5	28	35	43	53,5	
	Į	37	44	51	68	92	122	
	К	37,5	44	52,5	60,5	74	90	
	L	121,5	145,5	177,5	211,5	249	314	
Gehäuse	T1	43	53,5	67	88,5	110	138	
	T2	43	60	70	88,5	110	138	
	Z	100	120	125	156	195	250	
Masse	kg	5,2	9,6	17,3	30,2	56,5	111,3	


¹⁾ Anbaubild für Rohrflansche nach SAE J518 code 61 bzw. ISO6162-1 (siehe Kapitel 10)

- 2) Andere Wellenenden auf Anfrage
- 3) Gewindeanschluss nach DIN 3852 Teil 2

5 Bestellangaben

5.1 Bestellbeispiel

Gesucht: Innenzahnrad-Einheit QXEM

Förder-/Schluckvolumen: 40 cm³/U Dauerdruck: 210 bar Einsatz mit Mineralöl: HLP

Bestellbezeichnung: QXEM52-040N

5.2 Standardausführung

- · Drehrichtung rechts / links
- 2-Loch Befestigungsflansch nach ISO 3019/1; Baugröße QXEM 3-6
 2-Loch Befestigungsflansch nach ISO 3019/2; Baugröße QXEM 2+8
- · Dichtungswerkstoffe aus NBR
- Wellenende zylindrisch nach ISO R775
- Separater Leckölanschluss im hinteren Deckel des Triebwerkes
- Anschlüsse P₁ + P₂ gleich groß
- Druckbelastbare Wellendichtung
- · Schwarz grundiert, Flanschflächen nicht grundiert

5.3 Optionen

-O = ohne Grundierung

09 = Dichtungswerkstoffe aus FPM(Viton),

Motor ohne Grundierung

= 4-Loch Befestigungsflansch nach ISO 3019/2

(metr.)

130 = 2-Quadrantenbetrieb, Abmessungen der
 Arbeitsanschlüsse wie bei den QX-Pumpen
 2-Loch Befestigungsflansch nach ISO 3019/2

(metrisch)

Weitere Optionen auf Anfrage

5.4 Drehrichtung

Drehrichtung rechts =

Ölstrom fließt von P₁ nach P₂

(Blick auf das Wellenende: im Uhrzeigersinn)

Drehrichtung links =

Ölstrom fließt von P2 nach P1

(Blick auf das Wellenende: gegen den Uhrzeigersinn)

6 Druckmittel

Die Ölqualitätdarf die Verschmutzungsklasse 20/18/15 nach ISO 4406 nicht überschreiten.

Wir empfehlen die Verwendung von Druckflüssigkeiten die Additive zum Verschleißschutz im Mischreibungsbetrieb enthalten. Druckflüssigkeiten ohne entsprechende Additive beeinträchtigen die Lebensdauer der Pumpen und Motoren. Für die Einhaltung und laufende Prüfung der Qualität der Druckflüssigkeit ist der Anwender verantwortlich. Bucher Hydraulics empfiehlt einen Belastbarkeitswert nach Brugger DIN 51347-2 von ≥ 30 N/mm².

7 Hinweis

Dieser Katalog ist für Anwender mit Fachkenntnissen bestimmt. Um sicherzustellen, dass alle für Funktion und Sicherheit des Systems erforderlichen Randbedingungen erfüllt sind, muß der Anwender die Eignung der hier beschriebenen Geräte überprüfen. Bei Unklarheiten bitten wir um Rücksprache.

8 Verschmutzungsklassifikation

Reinheitsklassen (RK) nach ISO 4406

Code ISO 4406	Anzahl der Partikel / 100 ml									
	≥ 4 µm	≥ 6 µm	≥ 14 µm							
23/21/18	8000000	2000000	250000							
22/20/18	4000000	1000000	250000							
22/20/17	4000000	1000000	130000							
22/20/16	4000000	1000000	64000							
21/19/16	2000000	500000	64000							
20/18/15	1000000	250000	32000							
19/17/14	500000	130000	16000							
18/16/13	250000	64000	8000							
17/15/12	130000	32000	4000							
16/14/12	64000	16000	4000							
16/14/11	64000	16000	2000							
15/13/10	32000	8000	1000							
14/12/9	16000	4000	500							
13/11/8	8000	2000	250							

9 Betriebssicherheit

Für einen sicheren Betrieb und eine lange Lebensdauer ist für das Aggregat, die Maschine oder Anlage ein Wartungsplan zu erstellen. Der Wartungsplan muss gewährleisten dass die vorgesehenen oder zulässigen Betriebsbedingungen für die Gebrauchsdauer eingehalten werden.

Insbesondere ist die Einhaltung folgender Betriebsparameter sicherzustellen:

- die geforderte Ölreinheit
- der Betriebstemperaturbereich
- der Füllstand des Betriebsmediums

Weiterhin ist die QXEM-Einheit und die Anlage regelmäßig auf Veänderungen folgender Parameter zu überprüfen:

- Vibrationen
- Geräusch
- Differenztemperatur zur Druckflüssigkeit im Behälter
- Schaumbildung im Behälter
- Dichtheit

Veränderungen dieser Parameter weisen auf Verschleiß von z. B. Antriebsmotor, Kupplung, QXEM-Einheit usw. hin. Die Ursache ist umgehend zu ermitteln und abzustellen. Für eine hohe Betriebssicherheit der QXEM Einheiten in der Maschine oder Anlage empfehlen wir die kontinuierliche automatische Kontrolle oben genannter Parameter und automatische Abschaltung im Falle von Veränderungen, die über das Maß der üblichen Schwankungen in dem vorgesehenen Betriebsbereich hinausgehen.

Kunststoffkomponenten von Antriebskupplungen sollen regelmäßig, spätestens jedoch nach 5 Jahren getauscht werden. Die jeweiligen Herstellerangaben sind vorrangig zu berücksichtigen.

Inbetriebnahme siehe Betriebsanleitung 100-B-000014.

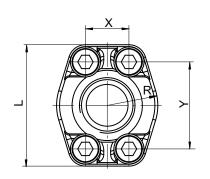
10 Zubehör

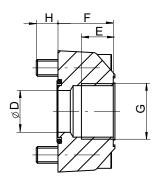
10.1 Aufbauventile - Bohrbild SAE J518 code 61 / ISO 6162-1

Druckbegrenzung	Druckbegrenzung elektrisch schaltbar	Speicherladeventil
A § DF	A $^{\circ}_{ m G}$ DA	AGSF
M × × Z	M **Z	P T Z
Technisches Datenblatt 100-P-000123	Technisches Datenblatt 100-P-000119	Technisches Datenblatt 100-P-000124

10.1.1 Beispiele Aufbauventile montiert

Aufbauventil mit Gewindeanschlüsse	Aufbauventil mit SAE-Rohrflansche 1)	Aufbauventil mit SAE-Rohrflansche + Rückschlagventil 2)
AGDF	ASDF+RF	ASDF+RF+RVSAE+DPSAE+ZPSAE

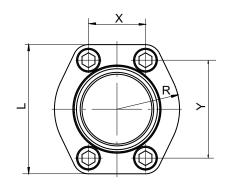

¹⁾ Rohrflansche siehe Kapitel 10.2 und 10.3.

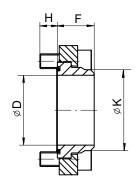

WICHTIG: Weitere Informationen zu diesen Aufbauventilen finden Sie unter www.bucherhydraulics.com

²⁾ Kontaktieren Sie Bucher Hydraulics GmbH bezügl. den passenden Rückschlagventilen.

10.2 Rohrflansche - Hochdruckausführung

- Max. Betriebsdruck 420 bar
- Bohrbild nach SAE J518 code 61 / ISO 6162-1


Rohrflansche mit Gewinde besitzen eine Plansenkung für Rohrverschraubung nach DIN 2353 Werkstoff: ST37 / O-Ringe aus FPM (Viton) auf Anfrage.


Bestell- nummer	Bestell- angaben	G Zoll	DØ	Е	F	Н	L	R	Х	Y	O-Ring, 90 Shore A	Schrauben DIN 912-12.9 Anzugsmoment [Nm]	
100037000	RF 01-R08	G1⁄2"	12,5	16	27	13	54	23	17,5	38	20,24x2,62	M8x30	30
100037010	RF 02-R10	G ¾"	20	18	30	12	65	26	22,2	47,6	26,65x2,62	M10x30	60
100037020	RF 03-R11	G 1"	25	20	34	13	70	29	26,2	52,4	32,99x2,62	M10x35	60
100037030	RF 04-R12	G 1¼"	32	22	38	14	80	36	30,2	58,6	40,86x3,53	M10x40	60
100037040	RF 05-R13	G 1½"	38	24	41	19	94	41	35,7	70	44,04x3,53	M12x45	120
100037050	RF 06-R14	G 2"	50	26	45	20	102	48	42,9	77,8	59,92x3,53	M12x50	120
100055470*	RF 07-R16	G 2½" *	63	30	50	18	114	57	50,8	89	72,62x3,53	M12x45	120

^{*} bei RF07 nur bis 210 bar zulässig.

10.3 Rohrflansche - Niederdruckausführung

- Max. Betriebsdruck 16 bar
- Bohrbild nach SAE J518 code 61 / ISO 6162-1

Werkstoff: HST37 / O-Ringe aus FPM (Viton) auf Anfrage.

Bestell- nummer	Bestell- angaben	SAE Bohr- bild	D	K	F	Н	L	R	X	Y	O-Ring, 90 Shore A	Schraube DIN 912-i Anzugsmor	8.8	Rohr 1) Ø außen ca.
100062450	RN 07-S	2½"	63	75	35	14	120	57	51	89	69,44x3,53	M12 x 30	70	75
100063880	RN 08-S	3"	76	88			140,5	68	62	106,5	85,32x3,53	M16 x 40	180	88
100063890	RN 09-S	3½"	89	100	40	19	158,5	73	70	120,3	98,02x3,53	M16 x 40	180	100
100063900	RN 10-S	4"	103	115			168	79	78	130	110,72x3,53	M16 x 40	180	115

¹⁾ Als Anschlussrohr wird empfohlen: Nahtloses Präzisionsstahlrohr nach DIN 2391 mit einer Wandstärke von max. 6 mm.

info.kl@bucherhydraulics.com

www.bucherhydraulics.com

© 2019 by Bucher Hydraulics GmbH, D-79771 Klettgau

Alle Rechte vorbehalten.

Die angegebenen Daten dienen allein der Produktbeschreibung und sind nicht als zugesicherte Eigenschaften im rechtlichen Sinne zu verstehen. Die Angaben entbinden den Anwender nicht von eigenen Beurteilungen und Prüfungen. Auf Grund kontinuierlicher Verbesserungen der Produkte sind Änderungen der in diesem Katalog gemachten Produktspezifikationen vorbehalten.

Klassifikation: 420.245.200